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GENERAL POTENTIAL SURFACES AND NEURAL NETWORKS

Amir Dembo and Ofer Zeitouni

Division of Applied Mathematics
Brown University

Providence, Rhode Island 02912

ABSTRACT

Investigating Hopfield's model of associative memory implementation by a

neuial network, led to a generalized potential system with a much superior per-

formance as an associative memory. In particular, there are no spurious memories,

and any set of desired points can be stored, with unlimited capacity (in the con-

tinuous time and real space version of the model). There are no limit cycles

in this system, and the size of all basins of attraction can reach up to half

the distance between the stored points, by proper choice of the design parameters.

A discrete time version with its state space being the unit hypercube

is also derived, and admits superior properties compared to the corresponding

Hopfield network. In particular the capacity of any system of N neurons, with a

fixed desired size of basins of attractions, is exponentially growing with N and

is asymptotically optimal in the information theory sense. The computational

complexity of this model is slightly larger than that of the Hopfield memory,

but of the same order.

The results are derived under an axiomatic approach which determines the

desired properties and shows that the above mentioned model is the only one

to achieve them.
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INTRODUCTION

J. Hopfield's suggestion of a neural network model for associative memories

* in [1], arose the interest of many scientists and led to an effort of mathe-

matically analysing its properties [2-121. It is simple to implement this model,

but hard to intuitively capture its properties, and even harder to rigouriously

analyze its performance as an associative memory. This is perhaps the main

reason for its attracting such interest.

The yet partial analysis done on this preliminary model revealed the follow-

ing major disadvantages:

(a) There are many spourious memories generated at unexpected places

(c.f., [3,7,8,9,11]), which attract a major part of the inputs.

(b) The capacity of the various versions of this model is bounded by N

(the number of neurons), (c.f., [3,5,6,7,8,10]), which is quite a poor capacity

compared to the Information Theory bounds on error correcting codes. Some

suggestions as to how this bound can be enlarged appear in [12] but supply only

a partial answer.

(c) Not only that the capacity is limited, it is context dependent, i.e.,

there are very small sets of memories which cannot be stored in the original

Hopfield model, and the shape of a basin of attraction depends on far away

attractors (c.f., [6]).

This motivated another suggestion of a continuous-time model with evolution

by N Ordinary Differential Equations (ODE's), (c.f., [13]). The new model is

reported experimentally to have better performance, although it still suffers

from some of the drawbacks of its ancestor. Furthermore, a rigourious analysis of

the ODE version seems to be almost impossible.

U%



2

In this work we take a different approach. We start by assuming only the

generic form of our model for associate memory, and derive its structure and

properties out of a set of assumptions on the system.

The basic model we have in mind is of a set of memories ("particles", in

classical mechanics or electrostatics, of specified "charge/mass"), which in

the simplest case are located in the location of the desired memories. In gen-

eral we allow for "spread out" charges (i.e., charge/mass densities instead of

6-functions). To each such "particle" a, we therefore associate its "charge

density" U . In general (unlike in classical mechanics), we allow for various

"types" of particles (memories), i.e., the potential associated with each particle

may be different (and this will affect the basins of attraction' shape). Indeed,

the following three properties would be desirable for an associative memory

model:

(P1) The system should be invariant to translations and rotations of the

coordinates.

(P2) The system should be linear w.r.t. adding particles in the sense that

the potential of two particles should be the sum of the potentials induced by

the individual particles (i.e., we do not allow inter-particles interaction; see

however, the discussion in Section IV).

(P3) Particle locations are the only possible sites of stable memory

locations.

In order to state our results, we need to define exactly our system and describe

how we build a memory out of the desired specifications.

In what follows, we take IRN to be our state space, and use first order,

potential type ODE's to avoid the kind of "kinetic equilibria" one finds in

second order equations, i.e., the equations of motion are:

x = -VV(x) (1)

6 -.,a
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where '(x) is our potential and V stands for the gradient operator. Since we

want to allow for various particle types, let us define a "type-space" A. A

may be finite, countable, or even non-discrete, but clearly A is smaller than M.N,

and therefore finite dimensional. We assume that A is a measurable space so that

integration over A is well defined. The specific examples for A that we have
2 mN

in mind are a finite, discrete set {1,2,...,K} or P. itself.

Our memory building process is defined as a transformation V(x) -= T(l(.,.))

where Ij E M(IRN x A),

and M(IRN x A) stands for the space of measures over IRN x A (which is clearly

a linear space). For example, assume we want a potential V (x) for a singlex0

particle of type a (a E A) located at x0. Then

V x0) T(Ix0 la)

(Pl) - (P3) now read

(Al) T(i(IR N x A)) = V(x) - T(v(cl N + n) x A)) = V(cx + I) where

N NxN N
N EP. , c EN× is a nonsingular, orthogonal matrix, and cP. + n is the c-

Nrotation, n-translation of P.

(A2) T is a linear transformation over M, i.e.,

N
•.( T(i N x A)) = N f(x,y,a) (dy x da) (2)

where f(x,y,a) is the kernel of the transformation (Green's function) and we

assume that f(.,.,.) is such that (2) makes sense.

(A3) Let V(x) T(p.(PN x A)). Let D = {(xa) Vi(dx,c) / 0}, where T

denotes the closure of a set. Then V(x) does not possess minima outside of

DI ,RN , where DI IRN is the restriction of D to IRN

I
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In addition, we assume throughout the necessary smoothness and growth condi-

tions on f(x,y,a) and its derivatives (w.r.t. x, y). In particular, we assume

that if f(x0 yo, 0 ) is finite then f(x,y,cc0 ) is twice continuously differentiable

w.r.t. x at (x,yo), Vx # y0, with integrable derivatives w.r.t. v(.,.).

Our first result, which is proven in the appendix, is the following structure

theorem:

Theorem 1. V(') satisfy (Al) - (A3) in a universal manner w.r.t. every U E M iff

it is of the structure:

Vx) = ' N fca (IIx- n1 2) i(dn x da) (3)
IR' xAa

where Va E A, f (lix-ni2) is a sub-harmonic function on I' N i.e.,

Vd > 0 f"(d)d + Nfld) < 0. (4)

a 2- _a (

Solving (4) under the assumptions that f'(d 0 0, for some d0 > 0, and

fl(d 0 ) do
adding the proper constant so that f (d0) - N ,(with the details given

1)
in the Appendix), we obtain for N > 3:

Lemma 1. Any solution of (4) can possess at most one local maxima (and no local

minima), for d E (0,-),and satisfies:

f(d) > f (dO)()2 , for d > d (5a)

.H-1)
fa(d) < f (d , for d < dO. (Sb)

Remarks. 1. By local minima (maxima) we mean a strict minima (maxima). For

strictly sub-harmonic functions, we can assure the also non-existence of non-

strict extrema.



2. Equality in equations (5) for every d > 0 implies equality in (4), which

implies that f (lIx-nhl 2) is an harmonic function on IRN - {I}. Whenever this

holds Va E A, not only there are no strict local minima of V(x) outside DI R but

there are also no strict local maxima of V(') at those points.

For this particular case (where for simplicity we use d = 1, w.l.o.g.):

V nx) =fnEJRN (6)

where

LAfaCl)1i.,dc),

Nis a signed measure on IR

The derivation of the representation of V(.) was done under the most gen-

eral condition. Usually however, one is interested in an associative memory with

a discrete number of memories, possibly of different types. Let therefore

A = {1,...,I}, where K is the number of particles, and let the a-th memory be

located at u(a) ERN, i.e., 1(n,a) = 1 × la<K , We concentrate from nown(a)

on on this class of systems, which is represented by

V(x) = I fcllx-u(I 2 11 (7)
ciEA

For example, when we combine (6) and (7), we obtain:

V(x) = a (8), ~EA I Ix u Ca)I I N-2)

which is exactly the Electrostatical potential in the particular case of N = 3.

For any, value of N > 3, and V(.) given by (7), with f (.) satisfying (4),

we distinguish between two types of memories:

(A) Attractive memories, with f (') monotonically increasing at least at

some d < in which case lim f (d) = - (from (5b)), and from (Sa) we note
d-*O

N %
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that (at least when f (.) is non-decreasing everywhere), the potential induced by

the memory at u ( a ) should approach rapidly its limiting value as (d/d 0 ) increases.

For those memories:

lima) V(x) = (9a)

x ()

so that they are the global (and also local) minima of the potential function,

and correspond to relatively short-range interactions.

(B) Repulsive memories, with f (.) monotonically non-increasing, in which

case limf(d) > -.
d- O (a)
In that case, u is not a strict local minima of V(.), and two behaviors

are possible:

(BI) lim f a(d) = 0, lim f (d) = const. An example is the electrostatic
d-O d "

force of a negative particle (instead of the positive one in (A)). Those are rela-

tively strong, short-range interactions, and are of interest if one wishes to

"avoid" specific locations (as now u(a) is a strict global maxima of V(.)).

(B2) lim fa (d) = 0, (and usually, lim f a(d) = _oo). An example is f(d) = -d
d-O d-*

("repulsive spring"), and those forces are weak in the short range but strong in

the long range. We do not use those kind of repulsive memories in the sequel.

In particular, for the Electrostatical form of the potential given in (8),

V(.) is an harmonic function outside {u(a) aEA, thus possess all its local minima

4: in the attractive memories, and all its local maxima in repulsive memories of

type (Bl). Thus, we can store in the same system two kinds of objects. Khile

the recall process using (1), will give rise to objects of type (A), the same

recall process with -V(.) instead of V(.) will give rise to objects of type (BI).

The potentials given by (4) and (7), possess the major property one expects

from an associative memory. The desired memories are arbitrarily chosen, with

their recall being guaranteed, and their number and distribution unrestricted.

Furthermore, our assumption (A3), together with the properties of the potential
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type ODE's in (1) (c.f. [14]) guarantee that except for a set of measure zero of

saddle points, ever) initial probe x(O) will converge to a desired memory u

of type (A).

Our assumptions, (Al) and (A2), made the mathematical analysis tractable.

When some are omitted the class of potentials with property (A3) is enlarged.

For example without (Al) we obtain (3) with fc(x,n) instead of f (HIx-niH2), and

(4) is replaced by:

VE N N
Vn E IR Vx EIRN - { } f (x) < 0 (10)

where Ax stands for the Laplacian operator w.r.t. x. This corresponds to a "non-

homogeneous" state space, but complicates the mathematical analysis.

To compare our class of "neural networks" with the model of [1], as well as

the Information Theory bounds on error correcting codes, we derive the discrete-

time finite state space analogue of the evolution (1).

N N
Consider the state space as the unit hypercube inlR , to be denoted by H

_ For any potential function V(x), the relaxation algorithm is (in the spirit of

[12]):

(A) According to some predetermined probability measure peak a point

N Ny E H having Hamming distance one from the current state x E H

(B) If V(y) < V(x), then the new state will be y, otherwise it remains x.

In both cases return to step (A).

As shown in [12], for any V(') and x , this algorithm converges to a

fixed point in H 
N . For any practical memory of this type, {u }A I, and

Nthus A is a finite set with K= JAI < 2'

Whereas the class of memories suggested here is of the form:

K

V(x) = fi(I x-u(i) 2) (1
2i=

, .4
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with f.(.) satisfying (4), the model suggested in [1] corresponds to (11) with:
1

f.(d) = 1[N - (N - 1d2] which does not satisfy (4).

Note that the more complex versions of this model (c.f., [5,6,8]), does

not satisfy assumptions (Al), (A2) at all.

In the next section we analyze the continuous-time model (the ODE's evolu-

tion), in terms of the basins of attraction, and convergence rate analysis. In

section III, the discrete time version is analyzed. The capacity (K), is re-

lated to the error correction capability, and compared with known results on

Hopfield's model. The last section is devoted to rough complexity analysis for

both models, as well as a comparison with the classical Hamming classifier (using

minimal distance search), and to possible generalizations of (1) which allow for

more complicated tasks as clustering, supervised learning, etc.

."
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II. BASINS OF ATTRACTION AND CONVERGENCE RATE

The potential given by (7) usually allows for an infinite number of distinct

stable states (memories), thus having infinite capacity. This however does not

reveal the shape of the basins of attractions of these memories.

For analyzing the performance of the system in (7) as an associative memory,

assume the simplified assumptions that fc(.) is a monotonically nondecreasing

function, independent of a and that I1u( L) - u( )Jj > 1, for every a / E A.

We shall investigate the value of:

a Min {max{P; s.t. llx(O)-u(a)ll < P implies x(t) -0 u(}. (12)

umax (a) p - tu }

OaEA

It is clear from symmetry arguments that c < 1/2 (where the outer minimiza-
.* - m a x -

tion is over all possible positions of {u c ) aEA in IR").

Our aim is to show that a proper choice of f(.) (which is sub-harmonic) will

lead to E as close to 1/2 as desired, thus the "maximal" basin of attractions

can be guaranteed.

The following lower bound on cmax is derived in the Appendix, by bounding

k the maximal contribution of farther away particles to forces in the boundary of

the £max sphere around u(a):

* Lemma 2. (a). E is larger than any value of r < 1 satisfying:max

f'(r 2)r > d {(t-r)f'((t-r)2)}(2t+l)N dt. (13)

(b). This is a tight bound in the sense that whenever the r.h.s. of (13)

diverges then cmax =.

We shall now restrict our attention to f(d) = -k(- -m with m > ( - 1)
d02

integer, (this guarantees that f(.) satisfies equation (4)).

.4

* I
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N 1
The r.h.s. of (13) is finite iff m > 2 - - and then, for integer m, (13) is

exactly:

N N
(km do)r-(2m+1) > (km dm )N (1-r)--(2m+l) Y ( 2 k(k-dr- 0 3[(-r 2m [g (l-r) ] (14)

k=O (2m)3
k~

which leads to

1> ma(m,N) > { + [1 3 (N+ ] l/(2m+1) 1 (15)

so,for any N, lim {km (m,N)} = 1/2, and for any m

m-" max k (k(N+l) - 1) with k > 1

, fixed, liMa ((k(N+l) - 1),N)} = 1/(l + kv-). So even for m = N/2,eN-co ma

E (mN) -1, for N large enough.
max " 4

: ',-Remarks. 1. If the {u(a)} are restricted to be contained in a sphere of radius
aEA

N
p in I , then the integral in the r,h.s. of (13) will have upper limit 2p, and

the additional term (2p-r)f'((2p-r) 2)(4p+l) N would be added there. It is thus

finite for every value of m (including the harmonic case m = - - 1), implying
2

m > 0 under this restriction.Emax
k

2. For N - , and fixed k, the 1/(1 + k%) behaviour is maintained even

when we consider only memories {u(a) } which are contained in the unit sphere

(p = 1), as a refinement of the arguments of Lemma 2 shows.

As for the rate of convergence, it is easy to verify that for a large

value of m, and x(0) far from all the {u ) TEA' it will take a long time for

the evolution in (1), before x(t) will be near one of the {u }A However

(as we prove in the Appendix):
p."

NLemma 3. Let Q be any closed set in fRN whose interior includes the convex hull

of {uJ)}aEA U {u, where u is an arbitrary point in N (possibly within the

convex hull of {u(a)}oL). Then, adding Ixe Q g(I Ix-ul 2) to V(x), where g(x)

4IL
1 .. .. .
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is any nondecreasing, differentiable function will not disturb (A3), nor create

additional fixed points to (1), provided all the f (") which compose V(x) are

monotonically increasing.

Therefore, if for example g(d) = d is added (with > 1), then the conver-

gence from x(O) at infinity to a point with squared distance d from the points

{u () }aEA and u (with d0 much larger then the squared distances between these

JAI * 1 points), takes the time T - d0 Thus, by using P, large

enough, convergence from infinity to 3Q (the boundary of Q) can take arbitrarily

small time.

Global investigation of the rate of convergence inside the convex hull of

{u(a)} A is quite cumbersome. Thus, let us restrict again the discussion to the

case where I Iu( ) - u( II > 1, f(d) :-k(d-m (with m > N, is an integer).
0

Furthermore, let x(O) satisfy I Ix(0) - u(a) I < ec(m,N) where e < 1, and F(m,N)
is the lower bound on max(m,N) given by the r.h.s. of (15).

. We have seen already that for every 0 < 1, x(t) - u( , but (as we prove
b-.K

-> in the Appendix):

Lemma 4. Under the above conditions x(T) = u , where:

(/0(m'N) (2m+2) /d 0\ rr l_ ^  ,2m+l}-1

T W 0- jl (I ^(mN))J. (16)
da- (1 - e6 (m ,N) )

So that for m large enough, v'% = c(m,N), and k = d /2m, we obtain log T -

2(m+l)log 6. Again, by enlarging m while preserving 0 fixed, T can become

arbitrarily small.

To conclude - the "maximal" basins of attraction can be guaranteed by en-

larging m (choosing strong, short range interactions), and this will also speed

up the convergence within these basins of attraction (which is completed in an

- Zi-
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arbitrary small finite time). The convergence from infinity to the neighborhood

{u'(a) } a can be fasten, without affecting all those properties, by the mechanism

suggested in Lemma 3 (adding a long .range field outside a proper set Q).

IA

m.
m

.'..'
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III. DISCRETE TIME EVOLUTION ON THE UNIT IYPERCUBE

Wh ereas the discrete time algorithm presented in the introduction uses V(.)

which has no local minima outside {u()} I it might possess fixed points out of thi

set. The reason for that is the "rigidity" of the algorithm which might not allow

descent in the gradient direction, due to the limited search for lower potential

Nonly in the Hamming distance one neighborhood of ever)' x E H

We can, however, show that the proposed class of potentials is optimal

according to the Information Theory bounds (as N - -), and in particular can be

used to design error correcting codes with positive rate (c.f., [15]).

Let us restrict the discussion to potentials of the form (11), with f(d) =

-m N*. -d , m > - - 1. For simplicity of notation we use the normalized Hamming dis-
- 1 N N

tance jx-y = Ixi-yil, so that H is contained in the unit sphere, and

assume that Vi #j, Ju(i) - u(JI > 2o, with I > > L, fixed. Therefore,
- - f

, tesecodewors {(i)}k
these code words {u 1i=l' can tolerate up to pN errors in N coordinates.

As we prove in the Appendix, by bounding the total "force" the farther away

particles apply on x(O) , we obtain:

Theorem 2. For every x(O) such that 1 x(O) - u <i) < 2ep, f > e ' 0, and:

le2m 1 - (1 + 2 -2m1

(Le- 2-2m

(a). The discrete time algorithm will generate a sequence of states {x(n)}1

such that Vn, {Ix(n) - u(i) jj < Ix(n-1) - u(i)IJ with equality iff x(n-1) = x(n).

(b). There are exactly jIjx(0) - u I) distinct states in this sequence,

and if each coordinate has positive probability to be chosen as the updated

coordinate, then x(n converges to u(i ) with probability one.

hi

-4 , . .! z ",. . - . -' ' . -"' '-..-' '.. .. '¢ ' '- .- '-'_..-'.,.-
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Consider now P > 0, and e < I fixed, with m > flo -) (where E > 0

is arbitrarily small). For this case, if N is large enough the r.h.s. of (17) is

larger than 2N , thus K is determined only by the bounds on the maximal number

of points in HN satisfying Vi j, 1uP ) - u (j ) JI > 20, i.e., Information Theory

asymptotic, sphere packing bounds for error correcting codes (c.f., [15]).

To conclude, Theorem 2 guarantees that for short range forces (i.e., m(N)

large enough), and large enough dimension, direct convergence (c.f., [3] for this

definition) to the nearest code word is obtained, independently on the number of

code words and their locations, provided that its initial distance is smaller than
1(i) (j) 1

-min flu - ull.

For comparison, for the model of [1] which has "strong" forces, the maximal

number of memories is bounded above by N even for e = 0 (i.e., recall with no

errors). Thus, this model has zero rate when referred to as an error correcting

code (c.f., [16]). Even when it converges, the convergence time might grow ex-

ponentially with N, unlike the linear time guaranteed by Theorem 2 (when proper

selection of the updated coordinate is done).

Although Theorem 2 was derived for the simplest case of equal desired

basins of attraction, it can be generalized to other situations.

II
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IV. LEARNING AND COMPLEXITY

A. Learning

The associative memory models presented in the preceeding two sections are

capable of both storing information and recalling it. The analysis was restricted

to the Euclidean state space, and the unit hypercube (equipped with the Hamming

norm), merely for simplicity of presentation, and to enable comparison with

Hopfield models (c.f., [1,13]).

When the state space is an arbitrary Riemannian manifold, the evolution

i ~ (1) can be defined more abstractically as the potential ODE's on that manifold,

with the gradient and Laplacian operators in (1) and (10) being defined on the

• manifold. As the maximum principle/Gauss theorem (c.f., [16]), which was the

key to Theorem 1, is valid also on any Riemannian manifold, most of the results

in this work can be extended to this more general context.

As for the discrete time version of the algorithm, it can be easily ex-

Ntended to any finite graph whose vertices are embedded in 1R , (c.f., [12]).

The process of storage and recall of information described in this work

does not involve any learning nor generalization (in the sense of [17]). It

is also uncapable of creating periodical orbits (as done for example, in [4]).

However, by further generalizing the kinematical laws, one can incorporate most

of these phenomena.

For example, periodical orbits can be generated by modifying (1) to the

more "classical" equation of motion:

= _l- VV(x) lx (18)
m

AS.
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which for N = 3 is just the Newtonian motion of particle with mass m, in the

field of the potential V(.), with viscosity coefficient .

Likewise, learning can be obtained by modifying the locations of fu ,
aEA

during the recall operation, either as a response to the distribution of the

initial states x(O), or to an external teaching procedure, or by adding inter-

particles interactions. These modifications can be implemented within the

evolution (1) (or (18)), by allowing the state x(t) to be represented by a non-

negligable particle, which apply forces on the given Iua)  A Generalization

(which is basically a spontaneous creation of clustering) is easily obtained

once the {ua}_ particles are allowed to apply forces one on the other, and
cLEA

change their locations.

Of course, in order to make all these remarks valid, goals should be defined

rigorously, and mathematica/physical rules that will achieve them should be in-

corporated within this framework.

We conclude this subject by pointing out that we have shown that there is

nothing special in Spin-Glass models, and other known models in phy. - and

mathematics possess the'bmergent collective computational abilities", onc,

are properly interpreted.

B. Complexity

Our proposed models have better performance than the models in [1,13], but

what about the implementation complexity?

N
For comparison purposes we deal with three algorithms on l1 . The first one

is the classical Hamming decoder w.r.t. to {u (i),K c HN It involves the par-

Wi Nallel computation of the K correlations (u ,x(O)) (where x(O) E 1' as well),

followed by a search for the maximal value, implemented in a tree structure.

Thus, KN multiplications are needed together with K log K comparisons of pairs

S
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of numbers, and the delay of the algorithm is log K + 1 "unit" times (where com-

parison and multiplication are assumed equivalent throughout).

The second algorithm is the one suggested in [1]. Each iteration involves

KN multiplications and N comparisons of pairs of numbers (since K < N for this

algorithm, as shown in [3,6,7,9,10]). The time delay however, is the number

* of iterations ("full sweeps", as all N coordinates are updated asynchronously),

which is believed to be independent of K.

The last algorithm is the one suggested here in Eq. (11), with f (d) . -d-m.

It involves KN multiplications in each iteration for obtaining the d's. The

operation of f.(.) is quite simple once done by an analogue computer: One diode

takes log d, then multiplication by (-m) is done, and at last a second diode com-

putes -exp[-m(log d)] = -d- M . So the overall complexity is again determined by

the KN multipliers, and the time delay (in "full sweeps") is again a small con-

stant as Theorem 2 implies.

Thus, for K < N, the new algorithm has the same complexity as Hopfield's

scheme, and the classical Hamming decoder, with smaller time delay for the first

two algorithms.

This result is true also for K ~h()N . but then the Hopfield model cannot

be used, whereas the new algorithm has complexity which is linear in K, i.e.,

exponential in N. In this case it is better (in time delay) then the classical

Hamming decoder, but does not admit the polynomial complexity of some of the

special error correctin, codes used in coding theory (c.f., [15]).

!%



ACKNOWLEDGP It NT

The authors wish to thank L. N. Cooper who suggested the problem to

them, A. Odlvzko and N. Tishbi who were willing to hear and help, and all the

participants of the neural network seminar in Brown University that reviewed

this work as it emerged to its final state.

-

-\ .-. E . - Cp



-
19

APPENDIX

Proof of Theorem 1.

We use assumption (Al) for the case of atomic measures on A xN, i.e.,

V(x) = f(x,'.0,ax0). Consider first a translation of the coordinates, i.e.,

x' = x + ', with proper translation of the atomic measure j, i.e., % = + + A.

As assumption (Al) implies that VCx') = V(x), f(x,n0 ,a) = f(x+A, n0+A, a0 ) for

every n0,x, EIR N and every c0 E A. Thus, f(x,rn0 ,c0) depends only or. x-r0 '

Repeating this argument for the case of rotation of the coordinates will prove

that f(x,7 0,a0 ) depends only on 1 x-%l1 2 for every % E A.

Thus, the structural assumptions (Al) and (A2) impose that V(.) is of the

form given in (3).

We now assume that (4) is satisfied for every c E A. It is easily verified

that (4) is equivalent to:

Vx ER- {n} Axfa(!x-nH 2) < 0 (A.1)

where A. is the Laplacian operator w.r.t. x. Equation (A.1) implies in view

N
of (3), that for every neighborhood U(x) of x E M

in which f p(nxda) is identically zero,

A xV(-) < 0 (in U(x)). In deriving this result we used the smoothness assumption

on V, together with integrability assumption on A f(.) to allow for changing the
x

order of differentiation and integration. Suppose now that ft (.) satisfies (4)

Va E A, but there exists a local minima at x0 EIR
N with U(x0) in which

;i(rxda) = 0. On U(x0), A V(.) < 0, so the maximum principle implies that the
aEA x

minimum of V(-) in any closed subset of U(x0) is obtained on the boundary of

S , --



20

U(x 0  (c.f., [18]). However, since X0 is a local minima there exists a small,

closed neighborhood around it such that V(x0) < Inf V(x) on that neighborhood,

so contradiction is obtained.

Remark: We have shown that Eq. (4) guarantees that assumption (A3) holds, where

we interprete as local minima only isolated points. Refinement of the above

arguments leads to the elimination of constant surfaces of local minima, when-

ever strict inequality holds in (4).

To complete the "only if" part of Theorem 1, we assume that (4) does not

hold for a E A and d > 0, and consider the case of %'(.) generated by (3) with
0 0

, (d-xda) being an atomic measure on a 0 x a uniform measure on the sphere of radius
1N

VJ in R. 'e shall prove that in this case there is a spourious local minima

of V(.) at x = 0, which contradicts assuption (A3), as d > 0.

At x = 0, I = d for ever" n on the sphere of radius v7 which

implies that A V() > 0 at x = 0 (since (4) and therefore (A.1) dces not hold
,. 9X

there). The continuity of A V(.) near x = 0 is imposed by our smoothness as-
x

sumption, and guarantees that there is a spherical neighborhood U(O) where

, Ax '(') > 0. Since the measure 11 is spherically symmetric, so is the potential

V(), (i.e., V(x) depends only on l1xii). We now apply the maximum principle on

the concentric spheres contained in U(O), and see that in any such sphere the

maximum of V(.) is obtained only on the boundary. However, the spherical sym-

metry of V(.) implies it is constant on these boundaries; i.e., x : 0 is a local

minima of %'(.), as we claimed above.

Proof of Lemma 1. Whenever f'(d) = 0, (4) implies that f"(d) < 0, so that

f'(d) can cross the zero level only once in d E (0,o), and with f"(d) < 0.

Thus, solutions of (4) will possess at most one local maxima and no local

,%7;w
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minima in (0,o). It is easy to verify that (4) is equivalent to

f(d) N/ 2  is monotonically non-increasing on (0,o). (A.2)

Thus:
)(d^ N/2

f < , for > d > > 0 (A.3a)

/d0\N/2
'Nf'(d) > f' 0 \ , for 0 <d <d0  < C. (A.3b)

Integrating (A.3a) from d0 to d > do, and using the condition
- f;(do)do

fa(d0) - N 0) 0  will lead to (5a), whereas integrating (A.3b) from d < do
(-f- I)

- to d will lead to (Sb), for N > 3. Similar results can be obtained for N : 1,2,

but are less interesting. 0

Proof of Lemma 2. (a) Since f(.) is sub-harmonic (satisfies (4)), and mono-

tonically nondecreasing (f'(d) > 0), it follows that f(.) atisfies (4) also for

N = 1, i.e., that f'(r 2 )r is a monotonically nonincreasing function of r EIR+

For every r > 0 such that [[x-u(Cc)[I < r implies (%r, x-u(a)) > 0, independently

of the locations of the other {u(a)} EA memories, the evolution (1) will mono-

tonically decrease I[x-u(a)II until x(t) = uW-  Thus, any such r is a lower

bound on max . In view of (7):

'I C x-u W) - f,(x-u( 1) j2) Cxu x-u )Yi.,aii(Vv, Ixf'- .- I J
(C) I I c - u( )l -

>f'([[x-u (a) 11 2)11[x-ua -u fCO( P~-~ ) 1 2 ) jjx u (F) jj

> f'(Ilx-u (a) 2) 1x-u(a) - f'(( Iu(a1)-u()[ -I Ix-u(a) j)2) •

.,.:: "(Ilu u( I - x-u(o I ) >
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> f'(r)r - (L1+( )E - L +nc)f'(((l+nF)-r) )((l+nc)-r)
n=0 n

f'(r 2)r + 2 L (t n-tnl){f'((tn-r) (tn-r) -
t =l+nc, n>l nn

- f'((tn1 -r) 2)(tn_ 1-r)}/Ctn-tn-1) (A.4)

where Lt - {u(a) < t, a # a, 6 E A}f, E > 0 is an arbitrary constant.

The first inequality in (A.4) comes from the Cauchv-Schwartz inequality, the

second from the triangle inequality and the monotonicity of f'(r 2)r w.r.t. r, and

. the third from the condition 11x-u( )II < < I and the monotonicity of f'(r2)r.

The lower limit on n is because of Lt = 0, t < 1, and the last equality holds due

to this fact. Since r < 1, f'((t-r)2)(t-r) possesses a continuous derivative on

. t E [1,-), and Lt is measurable (since it is composed of a countable number of dis-

crete steps), the r.h.s. of (A.4) is a continuous function of c > 0 which possesses

the limit (as c - 0): f'(r 2)r + Lt {f'((t r) 2)(t-r)}dt, which is also a

lower bound on the l.h.s. of (A.4), where in the derivation we assumed that this

d 2
integral is finite, (i.e., at least lim L _fV((t-r) (t-r)} = 0). In case it

t dt'

diverges, the same analysis can be done on {u }EA which are restricted to be

in a sphere with radius p, which means Lt = const. for t > 20, and then the l.h.s.

of (A.4) converges (for c -* 0) to

2' ( 2r 2r 2p d2)

f'(r 2)r - L f'((2p-r) )(2p-r) + Lt d f'((t-r) )(t-r)dt.

N 2
Thus, (13) will follow from the inequality Lt < (2t+l) , since f'((t-r) )(t-r)

- is monotonically non-increasing.

However, this inequality follows from the condition u u I I > 1,
Vo t B, as the N dimensional sphere of radius (t 1 around u contains at

least (Lt +1) disjoint spheres of radius 1/2 each. Comparing the volumes of the

Jlarge sphere and the (Lt+l) small ones we obtain the desired inequality.
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(b) Consider the case when the r.h.s. of (13) diverges. Then even if we

consider this integral with lower limit T >> 1 it still diverges to +-. A well

known sphere packing result is that there exists {u(0 01 such that
N.'. aEA

lim [Lt/(2t+l)N ] > 6 > 0 (c.f., [22]). For these {u( c) A the last line in
t -K-

(A.4) can be arbitrarily large, negative numbers for small c, for ever' r > 0,

u (a)
as f'(r )r is finite. Furthermore, we can obtain this result also when u

is at the origin and u( , 8 a are all at the upper half space (i.e., the first

coordinate of u( ) is non-negative). Consider for any' r > 0 the state x with

first coordinate equals to r, and the rest being zero. As t -* the distribution

of the {u aA iements in an infinitesimal disk between the spheres of radius

t and (t + Lt) becomes spherically uniform in the upper half space; therefore, as

- { I1 cos e dAj > 0 (where dA is a volume element on this disk,

and 6 is the phase w.r.t. to the first coordinate axis), for the chosen x,

(7V, x-u (C) ) = - provided that the second line in (A.4) diverges. However, we

already know that the last line in (A.4) diverges, even when only t > T >> 1

is considered, and for these values of t = I uI )-u c' l , I u(E) -u(a) 1 ~

,1uCB)-xIl + I lu(a)-xll, as r = IIx-u(a')Il << t. Thus, both the second and the

last lines of (A.4) diverge together.

To conclude, we have shown that there is a sphere packing construction

with u(a) 0, for which whenever the r.h.s. of (13) diverges, choosing x(0)

with the first coordinate arbitrarily small positive, and the rest of them zero,

will result in i with arbitrarily large positive first coordinate and the rest

of them zero (using symmetry arguments), so that x(t) will move along the posi-

. tive part of the first axis and never converges to u'' = 0. Thus, Emax = 0

in this case. 0

4J
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Proof of Lemma 3. By adding 1 X g(I Iu 112) to V() we have not clhanged V(-) or

the evolution (1) in the interior of Q. Thus, we only have to prove that there

are no fixed points of (1) outside Int Q.

Assume that x0 9 Int Q is a fixed point of (1), and denote by C c Int Q the

convex hull of {u(001aE U {u}, then there is a convex, closed, neighborhood U(x0)

of x0, such that U(x0) l C = ( (as C is a closed set). Thus, there is an hyper-

plane./that strictly separates C and U(x0) (which is also compact); let n denote

the vector normal toadtowards C. Now, on U(x0):

(i,n) = + I 2f'(Ilx-u W)]2) (u(a)-x,n) + 1 2g'(CIx-_u1 2)(u-x,n) > 0 (A.5)

where the inequality follows from the monotonicity of the f a(.)'s and g(.), and

the geometry of the problem. Thus, in particular * 1 0 at x0 E U(x0 ), which
contradicts the assumption that x0 is a fixed point of (1)

We have also shown by (A.5) that there is a drift towards C, from any point

N" x C. 0

Proof of Lemma 4. Let us define R(t) = j x(t)-u(o ' , then for evolution (1):

R(t) R(t) (VV(x(t)) x(t) -u ()

< -2 f'(r 2)r + JA[ I (1r))(ir .~ (A.6)

N,: where r = ec(mN), and in deriving (A.6), we used (A.4), and the condition

H x(0) - u(a) < e (m,N) which ensures that R(t) < R(0) <_ r (due to (15)).

However, (13) - (15) also bound the r.h.s. of (A.6) for f(d) = -k( -m and give:
d0

P kdm ( 1 \(2m1+l) 1 _ (mN) (2re+l)A''. (t) < -2kind 0. (A.7

0 }- ( -)(, .\(1l~) (A. 7)-- @ € ( m ,N) ( m , N I O ( m N

Integrating (A.7), and using the fact that R(t) > 0, we obtain R(t) < 0

for t > T, where

*.1
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.. .. .- (A .s)

v'o l- e(m,)

However, R(t) < 0 implies R(t) = 0, that irplies x(t) =u for t > T.

Proof of Theorem 2. Consider a neighborhood y of x(n) with Hamming distance one,

then either (A) ily u(i) T= !Ix(n)-u (i) _ 2, or (B) Ily u(i) = jIx(n)-u() Ij +
N NP

and for x(n) # u(i) there are exactly ;-Ijx(n)-u(')II > 1 neighbors Of t)pe (A).

The theorem is thus a direct consequence of the following claim (when (17) holds):

Claim: For an" x such that Ix-u I < 26o then V(y) < V(x) for neighbors v of

type (A), and V(y) > V(x) for neighbors y of type (B).

Proof of the Claim. Note that for any 1 < j < K, - 2 < lyu()I I

- '

jx-u (] <II <2, since y and x differ only in one component. Furthermore, it is

enough to show that V(y) > V(x) for neighbors y of type (B), with strict inecual-

ity for IIx-u(i) I I 2eo, since if v is of type (A) w.r.t. x, then 'v-u~i)II < 26c

as well, and x is of type (B) w.r.t. y.

Since the function f(d) is monotunically increasing, and y is of type (B):

f( ly-u(J j112) > f((l x-u(J)l - 2)2) vj # i

M 2 M 1 2 2(A.9)
f(Ily-u = f((lx-u(i) + ,T)2)

So,

V(y) - V(x) > {(llx-u (i ) 1)-2m - (I x-u(i) + 2)-2m}

K (j{()Ix-u(J[ 2)-2m _ (I x_u(j)jI)-2m}. (A.10)

j=l
j#i

But, Iix-u(i) I  < 2e, and Ilx-u(J)ll _ IIu(i)-u(') I I lx-u(')Il > 2 (I-e),
A -2m -2mand the function g(r) r (r+A.) is a monotonically decreasing function,

so from (A.10):

Si
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u'-2 -(2) > {2-2 2

- (K-1){(2D(i-e) - 2m (20(l-e)) (A.ii)

with strict inequality whenever 1 Ix-u(i)I[ < 2cS. To complete the proof, we just

have to show that the r.h.s. of (A.11) is non-negative whenever (17) holds. This

is easily" shown by a simple rearrangement of (A.11) using C < 1/2 and (1-C) > 1/2.
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